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Abstract. The Gibbs random field (GRF) has proved to be a simple
and practical way of parameterizing the Markov random field, which
has been widely used to model an image or image-related process
in many image processing applications. In particular, the GRF can
be employed to construct an efficient Bayesian estimation that often
yields optimal results. We describe how the GRF can be efficiently
incorporated into optimization processes in several representative
applications, ranging from image segmentation to image enhance-
ment. One example is the segmentation of computerized tomogra-
phy (CT) volumetric image sequence in which the GRF has been
incorporated into K-means clustering to enforce the neighborhood
constraints. Another example is the artifact removal in discrete co-
sine transform-based low bit rate image compression where GRF
has been used to design an enhancement algorithm that reduces
the "blocking effect" and the 'Wnging effect" while still preserving
the image details. The third example is the integration of GRF in a
wavelet-based subband video coding scheme in which the high-
frequency subbands are segmented and quantized with spatial con-
straints specified by a GRF, and the subsequent enhancement of
the decompressed images is accomplished by smoothing with an-
other type of GRF. With these diverse examples, we are able to
demonstrate that various features of images can all be properly
characterized by a GRF. The specific form of the GRF can be se-
lected according to the characteristics of an individual application.

We believe that the GRF is a powerful tool to exploit the spatial
dependency in various images, and is applicable to many image
processing tasks.

1 Introduction
Markov random fields (MRFs) have been used to model var-
ious images in many image processing applications. As
proved by the Hammersley-Clifford theorem,' the Gibbs dis-
tribution provides a simple and practical way of parameter-
izing MRFs through specifying certain potential functions.
In general, a Gibbs random field (GRF) can be described by
a potential function and a neighborhood system such that the
characteristics of the image are appropriately modeled. The
selection of specific forms of the potential function will en-
able the GRF to be employed in constructing an optimal
Bayesian estimation in a variety of image processing tasks.
In this paper, we present several applications in which the
GRF has been incorporated into specific problems to yield
optimal results. With these diverse examples, we are able to
demonstrate that various features of images can all be prop-
erly characterized by a GRE.

In the context of the segmentation of computerized to-
mography (CT) volumetric images,2'3 we employ a GRF to
impose spatial constraints to obtain homogenous segmen-
tation of the anatomical structures. Due to the noise intro-
duced in the imaging process, different clusters at different
locations may have similar intensity appearance, while the
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same cluster may have a different intensity appearance at
different locations. Without spatial constraints, classic K-
means clustering is unable to correctly label a pixel whose
gray level deviates significantly from its cluster mean. Three-
dimensional spatial constraints imposed by a GRF enable us
to develop an adaptive clustering algorithm suitable for the
segmenting of CT volumetric images with spatially varying
intensity distributions. The extracted left ventricle chamber
is consistent with both the given image data and the left
ventricle anatomy.

In the context of artifact removal in discrete cosine trans-
form (DCT) coded images at low bit rates,410 GRF is used
as a prior image model to differentiate coding artifacts from
original image details. At low bit rates, block-based DCT
compression schemes generate artifacts known as the ''block-
ing effect' ' and the ' 'ringing effect. ' ' Without proper mod-
eling of the different discontinuities, i.e., those of the original
image details and those of the artifacts, general postprocess-
ing would oversmooth the image while reducing the artifacts.
In addition to a scheme that attempts to recover the DC
component of each block from the coded one, a special form
of the potential function called the Huber minimax func-
tion1 1,12 is used in the image enhancement. An appropriate
parameterization of the Huber minimax function enables
smoothing of the artifacts and preservation of the image de-
tails. With GRF modeling, we are able to obtain improved
image reconstruction in terms of both visual observation and
peak signal-to-noise ratio (PSNR) improvement.

In the context of 3-D subband video coding,'3"4 GRF is
used in both the encoding stage and the postprocessing of
decoded images. At the encoding stage, a video sequence is
decomposed into temporal subbands, which are further de-
composed into spatial subbands, respectively. According to
the characteristics of the high-frequency subbands, spatial
constraints are employed to identify visually important struc-
tures in the subband images. A segmentation-based adaptive
quantization scheme is designed to reduce the activity of these
subbands while still preserving the visually significant com-
ponents. Through proper selection of the GRF in the seg-
mentation, quantization of the high-frequency subbands
yields large homogeneous regions by eliminating the non-
prominent isolated pixels and thus achieves a higher compres-
sion ratio. At the receiving end, the reconstructed images
from the segmented high-frequency subbands are enhanced
with the incorporation of another GRF, and the image details
are well preserved. The combination of the segmentation and
the enhancement, both based on GRF, makes it possible to
transmit a high-quality video signal with a high compression
ratio.

As shown in these applications, the choice of the GRF
depends not only on the type of image data, but also on the
nature of the image processing task. The applications pre-
sented in this paper also serve as examples on how a specific
form of GRF can be selected, according to the nature of each
estimation problem. The successful application of GRF to
these individual estimation problems reveals that many ill-
posed inverse problems become solvable with the incorpo-
ration of appropriate GRFs in their regularization processes.

The following notation is used throughout the subsequent
sections: Uppercase letters are used for random variables and
lowercase letters for the corresponding realizations: a random
field X will be defined on a set of sites S, i.e., a set of N X N
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points; a pixel at site s is denoted by Xc E k; bold uppercase
letters are used for matrices or transformations.

2 Bayesian Estimation Based on the Gibbs
Random Field

In image processing applications, many problems require the
estimation of an image or other 2-D field X from corrupted
data Y. These inverse problems are generally ill-posed."5
Prior information is often very useful in formulating a re-
gularized process so that optimal results can be obtained by
solving the regularized problem."5

2.1 Maximum a posteriori Estimation
A widely used approach to these problems is the Bayesian
estjmatjon that incorporates prior information through an a
priori distribution of the random field X. The prior infor-
mation is often represented by a GRF. 8, 5, 6 An appropriate
choice of the GRF generally enables the estimation to be
efficiently implemented and significantly improved.

The Bayesian estimation can be formulated as a maximum
a posteriori (MAP) estimation that maximizes the posterior
probability p(xy) based on the observed image data Y and
a reasonable a priori distribution of the 2-D random field X.
A MAP estimation can be written as:

x= argmaxp(xy) (1)

Using Bayes' rule, the a posteriori probability can be ex-
pressed as

p(xy) p(yx)p(x) (2)

The optimization can also be conveniently expressed using
the log-likelihood function

J= argmax{logp(yx)+logp(x)} (3)

Note that, without the a priori distribution p(x), the esti-
mation scheme becomes a maximum likelihood estimation
(MLE). MLE is often used as the initial estimate in the it-
erative MAP estimation. Various distributions ofp(yx) and
p(y) have been proposed for different types of applications.
However, all MAP estimation schemes share the same prin-
ciples of optimization.

2.2 General Form of the Gibbs Random Field
The a priori distribution p(x) can often be modeled by a
GRF. In general, a GRF can be described by a potential
function and a neighborhood system. The potential function,
or the Gibbs distribution function g(x), is an explicit
expression' ofthe distribution ofa MRFX. It is in the general
form of

g(x) = exp[
—

(C (x)] (4)

where Z is a normalization constant and V is a certain clique
potential for clique c. In image processing applications, a
clique C 15 a local group of pixels, and C is the set of all such
local groups that constitute the neighborhood system of
the GRF. The neighbors of a pixel at site s are denoted by

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 07/09/2015 Terms of Use: http://spiedl.org/terms



On the applications of Gibbs random field in image processing

8s CS, where S is the set of all sites. If c is defined such that
Vs, r E c, s and r are neighbors, then the clique has the prop-
erty that

Vs,rES, sBs, rE3s'sE3r.
Moreover, the essential property of an MRF is

Vs ES, P(XsLr, rEas)

which means that the conditional probability depends only
on the neighborhood constraints.

Recently, many researchers have focused on GRFs es-
sentially in the following form'5

logg(x) = — Xr) + constant
{.v,r}EC

wherebs, is a weighting factor and p() is preferably a mono-
tonic function of the difference between neighboring pixels.
In the following, we discuss two major types of potential
functions: nonconvex and convex.

2.2.1 Nonconvex potential functions
Many nonconvex potential functions used in GRF-based im-
age modeling are of simple forms. One such function used
to represent image continuity is written as

V (x)=1' if=x and s,tEc
C ifxçx, and s,tec

Note that this function is actually a function in the form of
Eq. (7). Here x and x. represent the clusters to which pixels
t and 5 belong, and c represents a designated clique. This
function is especially suitable for segmentation.'6 Note that
the maximization of the overall posterior probability in
Eq. (3) implies the pursuit of the lowest potential state in
Eq. (4). Therefore, by penalizing inhomogeneous segmen-
tation with positive potential 1 and by rewarding homoge-
neous segmentation with negative potential — 13 within local
neighborhoods, this potential function can be used to enforce
the desired spatial constraints to achieve homogeneous seg-
mentation, if an appropriate neighborhood system C and a
parameter 13 are chosen.

Another nonconvex function'7 is given as

p()=min{L\,T}

where L represents the difference of gray-level values be-
tween two pixels, and T is a parameter such that the equal
penalty region beyond T allows sharp edges to be preserved.
This function is no longer a binary function and has often
been used for edge-preserving filtering. However, this func-
tion only belongs to C°, and the transition at T is not smooth.
The theoretical and practical disadvantages may lead to some
unnatural results, e.g., edges of magnitude larger than a
threshold are sharp, yet those of lower magnitude are smooth
because of the derivative discontinuity at T in this potential
function.

2.2.2 Convex potential functions

Convex functions are often chosen as Gibbs potential func-
tions for practical as well as theoretical reasons. A convex

constrained optimization problem is usually desired because
there exists a unique, stable solution to such a problem, and
it can also be optimized efficiently. In addition, convex func-
tions with a smooth transition result in a desired continuity

(5) in images. Some examples are shown in Fig. 1.

Generalized Gaussian Markov random field. It has
been proven'5 that a proper model with scale-invariant prop-

(6) erty is of the form

P(L)=kXV (10)

where L also represents the difference of gray-level values
between two pixels. This is called a generalized Gaussian
Markov random field (GGMRF) with parameterp controlling

(7) the behavior of the GRF. Large p tends to smooth the dis-
continuities, while smaller ones tend to preserve the discon-
tinuities. The derivative of p() represents the attraction be-
tween two pixels with gray levels separated by and is called
the influencefunction. Influence function is also an indication
of image smoothness. Generally, p(.) belongs to C2, except
when p is 1 . Note that p = 2 reduces the model to a Gaussian
Markov random field (GMRF). Because of the analytical
advantages, GMRF has been widely used. However, the lin-
ear low-pass filtering nature of GMRF tends to blur the image
edges and other details excessively and indiscriminately. This
is because the quadratic term grows too quickly with the
increase of the difference between pixel values, and therefore

(8) imposes excessive penalty to edges. However, GGMRFs with
p between 1 .0 and 2.0 can achieve good compromise between
noise suppression and detail preservation,'5 because they es-
sentially impose nonlinear filtering.

Huber-Markovrandom field. Non-GaussianMRFs are of
particular interest in image processing, because they can po-
tentially model different contents and features in an image
and impose nonlinear filtering. Another such convex function
is the Huber minimax function, which has been investigated
by Stevenson in various image filtering applications.8"2 It is
a two-segment function

12,
p(s) =

1T2 + 2TI( - T,

The quadratic segment imposes least-mean-square smooth-

19\
ing to small discontinuities with a magnitude smaller than T.

) However, the linear segment ofthe function imposes a lighter
penalty for greater than T and thus allows sharp transitions,
such as edges. Note that the Huber minimax function is in
C', so the influence function is continuous. A MRF char-

> T
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GMRF (p=2) HMRF (T=1) (iGMRF (p=l.2)

Fig. 1 Some potential functions.
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acterized by the Huber minimax function is referred to as a
Huber-Markov random field (HMRF)'2 (see Fig. 1). The pa-
rameter T controls not only the threshold to switch between
the quadratic segment and the linear segment, but also the
slope of the linear segment. Therefore, it plays a crucial role
in determining the characteristics of the HMRF.

2.3 Optimization Technique: Iterative Conditional
Mode

As clearly indicated in Eq. (6), the MRF is used to model
the local characteristics of an image, and is combined with
the given image data to construct a MAP estimation of the
image. However, certain large-scale characteristics of the
model are often induced if the optimization technique is not
properly chosen.'8 In general, the MRF would exhibit pos-
itive correlations over arbitrarily large distances through
clique interactions, and adjacent pixels are very likely to have
the same properties, such as the same cluster or same inten-
sity. One of the major concerns in choosing the optimization
techniques is to avoid such a large-scale effect.

Some of the optimization techniques may lead to unde-
sired computation and convergence difficulties.' Simulated
annealing, although it can guarantee the convergence to the
global optimum, is computationally demanding and may be
impracticable in many applications. Gradient descent is less
computationally demanding, but it can only guarantee the
convergence to a local optimum. The computational burden
using both these techniques is enormous, and the reconstruc-
tion may suffer from some undesired large-scale effect be-
cause of the simultaneous optimization of the two compo-
nents in the objective function.

Fortunately, the difficulties in the GRF-based optimization
processes can he overcome by selecting an optimization tech-
nique known as the iterative conditional mode (1CM).'8 This
mode is computationally inexpensive and invulnerable to
large-scale effects. It was first proposed as an approximation
to the Bayesian estimation that has an overall maximum prob-
ability and was later established as a distinct optimization
method by yielding an estimation that has maximum prob-
ability at each individual pixel. A single cycle of 1CM only
requires the successive minimization ofthe objective function
at each pixel. The iterative process is repeated until no change
occurs in the estimation or the change is below a preset thresh-
old in practice. Note that each pixel has only a few neighbors,
therefore, the consistency constraints, which are identified
by the H-C theorem' and imposed by a GRF, are highly
restricted. Not only are proper local constraints enforced, but
the computation efficiency is also significantly improved be-
cause only local computation is involved in the 1CM opti-
mization. As Besag pointed out,'8 the dependence of the
estimation on only the local constraints is ensured by the
rapid convergence of the 1CM implementation, therefore the
undesired large-scale characteristics are minimized.

3 Segmentation of CT Volumetric Cardiac
Images

In biomedical image analysis research, the development of
a robust 3-D segmentation technique is essential for the pro-
cessing of a huge amount of volumetric biomedical images
or image sequences produced by various medical imaging
modalities. It is a very challenging task because of the in-
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herent noises in the imaging processes.'9 The 3-D image data
used in this research are a sequence of CT volumetric data
that consist of 16 volumes. Each volume contains 95 90 X 90
slices. Each volumetric element, or voxel, represents a 0.9
mm3 cube of tissue. To bring out the left ventricle chamber
as a bright object, a Roentgen contrast agent is injected into
the right atrium several seconds prior to the scanning of the
heart. The left ventricle chamber appears in the CT volumetric
images as large, bright, smooth, solid regions, varying in size
and shape over time, approximately attached to the left atrial
chamber and aorta through the valves, and separated from
the myocardium by blurred and noisy interfaces.2

3.1 Adaptive K-means Clustering with GRF-Based
Spatial Constraints

Traditional statistical image segmentation algorithms, from
thresholding to K-means2° and even fuzzy K-means cluster-
ing,2' classify the pixels into clusters based solely on their
intensity values. Each cluster is usually characterized by a
constant intensity, i.e., the cluster mean, and no spatial con-
straint is imposed. In practice, images are usually a noise-
contaminated version of the reflected density function, and
the image intensity of the same class may change over space
due to some physical constraints imposed by the imaging
system. In many biomedical applications, even though the
relative intensity is evident for different clusters within a
small neighborhood, different clusters at different locations
may have a similar intensity appearance due to the inho-
mogeneity of the imaging media. Traditional K-means ap-
proaches often fail here because of the low SNR in these CT
images. The ability to adapt to the local intensity distribution
is generally required for a robust image clustering algorithm
to obtain the correct clustering results. In addition, certain
spatial smoothness constraints are needed to reduce mis-
clustering caused by the noise introduced in the imaging
process, and to obtain homogeneous segmentation, since a
pixel generally tends to belong to the same cluster as most
of its neighbors unless it is on the edge of a sharp region
transition.

The proposed adaptive K-means algorithm is based on the
segmentation algorithm developed recently by Pappas. '6 His
algorithm includes the 2-D spatial constraints characterized
by GRFs and the adaptive estimation of the local means of
each region. We have extended Pappas's algorithm in two
important aspects. We have developed 3-D spatial constraints
to suit the volumetric nature of the image data. We have also
enhanced the adaptive clustering algorithm to account for the
varying characteristics of both the local means and the local
variances.

3.1 .1 Incorporation of the Gibbs random field
In image segmentation, the goal is to produce a robust la-
beling of each pixel. Therefore, a binary potential function
defined by Eq. (8) is suitable for enforcing the spatial con-
tinuity to the regions in the labeling process. For a 2-D image
defined on a Cartesian grid, a simple neighborhood system
of a pixel consists of its four nearest pixels. For a 3-D image,
the 2-D neighborhood system can be extended so that the
neighborhood of a voxel contains its six nearest neighbors.
If we model the conditional probability as a Gaussian process
with a spatially varying mean i and a spatially varying
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variance o at a pixel location s, and denote a given image
by y and a segmentation of this image by x, then the overall
a posteriori probability can be derived as

p(xy)oc exP{_[lns+(Ys_s)2]

- V (x)}

The first summation term corresponds to the adaptive ca-
pability that forces the segmentation to be consistent with
the local intensity distribution with locally estimated mean
psand variance o• . The second summation term corresponds
to the spatial smoothness constraint characterized by the
clique potentials within a given 3-D lattice.

In biomedical image segmentation, the a priori knowl-
edge of the structure of interest is usually available, because
we often study certain biomedical structures with known an-
atomical information. The anatomical information is then
used in the design of K-means clustering to set the value K
and to parameterize the GRF. In the case of CT volumetric
image data, K is set to 4 according to the available knowledge
of the cardiac structure with the brightest cluster correspond-
ing to the potential left ventricle chamber. We assign the
same 1 to the clique potentials both within a cross section
and between cross sections, since the 3-D sampling lattice
of the CT volumetric data is uniformly structured.

3.1 .2 Segmentation and beyond
The proposed adaptive clustering algorithm applied to the
CT volumetric data is implemented using 1CM. First, an mi-
tial segmentation x is obtained using the simple K-means
algorithm.20 Then, the overall posterior probability given by
Eq. (12) is maximized on a point-by-point basis, with the p
and the :T being updated after each iteration. Therefore, the
optimization is accomplished through alternating between
MAP estimation of the clustered regions and iterative update
of the cluster means and variances. Such an alternating pro-
cess is repeated until no pixel changes classes. The adaptation
is achieved by varying the window size used for the esti-
mation of the local means and variances. The initial window
is the whole image, and thus the mean and the variance of
each class are constant throughout the image. The window
size decreases as the iteration progresses. The reason for this
is that the segmentation is crude in the early stages of the
algorithm, and a large window is necessary for robust esti-
mation of the means and variances. As the segmentation
becomes finer, smaller windows give more accurate estimates
of the spatially varying local parameters. In this way, the
algorithm gradually adjusts the clustering to the local char-
acteristics of each class. Typically, the window size is halved
after each iteration, and the overall algorithm stops when the
minimum window size is reached. As a result, this algorithm
not only imposes the smoothness constraint on the segmen-
tation, but also allows the intensity distributions to adjust to
the local characteristics of the image; hence, it allows the
same class to have different intensities in different parts of
the image.

A number of differences exist between this algorithm and
that of Pappas.'6 One important difference is the introduction

of the iterative estimation of cluster variances in the opti-
mization process. The assumption of changing variances and
the implementation of their estimation in the segmentation
allow us to account for the noise levels to change from one
local area to another, and from one cluster to another. In
practice, the variances of different clusters are generally dif-

( 1 2) ferent,and the variance of a specific cluster also changes with
location. Therefore, this additional feature of the proposed
algorithm enhances the flexibility of the original adaptive
K-means clustering algorithm.'6 Second difference is in the
parameterization of the GRF. Clearly the parameter is related
to the image contents as well as to the imaging conditions.
According to the biomedical structure and the known imaging
condition, we choose the parameter 3 such that the spatial
constraint is strong enough to smooth out the noise while
still preserving the structural details. Upon the completion
of the adaptive K-means clustering, subsequent processing
may be necessary if the given biomedical images contain
certain structures that are anatomically separate but statisti-
cally indistinguishable. In the case of cardiac images, we
have also designed a set of knowledge-based morphological
operations to distinguish the left ventricle from the statisti-
cally inseparable left atrium and aorta. Such an example is
shown by the bottom right slice in Fig. 2. The discussion of
such operations is beyond the scope of this paper.22

3.2 Results and Discussions

We have successfully applied the proposed segmentation al-
gorithm to the volumetric cardiac images. The cross sections
of the left ventricle extracted using this approach compare
favorably with those obtained using the traditional K-means
method (Fig. 2). In comparison, the segmented regions are

Fig. 2 Comparison of the segmentation results: (a) the original CT
images, (b) the K-means segmentations, (C) the adaptive K-means
segmentations, and (d) the final segmentations (left ventricle).
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4.1 Convex Constrained Restoration with the
HMRF Model

X=arg mm >V(X)

= arg mm p(x, —xk/)
XEX C,,,,, EC k,lEc,,,,,

not as homogeneous if the GRF-based spatial smoothness
constraints are not enforced. In particular, the 3-D spatial
constraints help to propagate structural information from a
slice to its neighboring slices. The algorithm is capable of
handling spatially varying intensity distributions, and the in-
corporation of the 3-D spatial constraints enforces additional
spatial smoothness constraints in the segmentation of volu-
metric data.

Using the proposed algorithm, the automatic extraction of
the biomedical structures becomes fast, reproducible, without
operator bias, and suitable for further processing and analysis.
In addition, the temporal changes of the shape of the biomed-
ical object will undoubtedly provide another dimension of
constraints that can be used to better resolve biomedical im-
age segmentation problems.

4 Artifact Removal in DCT-Based Image Coding
at Low Bit Rates

The block-based DCT has been the most popular transform
in a variety of image and video compression applications.4'23
In low bit rate applications, a high compression ratio is de-
sired, and is usually achieved by coarse quantization and
truncation of the high-frequency coefficients that are consid-
ered visually less significant.4'23 Consequently, two major
artifacts known as the ' 'blocking effect' ' and the ' 'ringing
effect' 'are generated, and they severely degrade the quality
of the decompressed image.

The blocking effect is the major artifact that appears as
perceptible rectangular block structures in the reconstructed
image. Several techniques have been proposed to remove the
blocking effect.4'° Among them, many filtering techniques
essentially apply linear filtering to the decompressed blocky
image so that they also smooth out the original image details.
To avoid oversmoothing ofthe edges, a scheme was proposed
that first estimates the edge segments in the decompressed
image before smoothing.6 However, the estimation of the
edges is a very challenging task, especially in the case of low
bit rate coded images when it is very hard to differentiate
true edges from the artifacts. Other techniques attempt to
formulate the removal of the blocking effect as a constrained
image restoration problem.79 The ringing effect appears as
a ringing pattern around sharp edges in the image and is
especially perceivable in document images. To prevent blur-
ring the image while removing the ringing effect, an edge-
preserving nonlinear filtering is desired. However, until re-
cently, there has been little investigation on this aspect.'°
Although the Joint Photographic Experts Group (JPEG) stan-
dard is not designed to compress binary images, the ringing
effect can be very prominent in general gray-level images
that may contain documents or other contents of long and
thin shape, high contrast, or sharp transitions. Therefore, the
removal of such artifacts in DCT-based compression is never-
theless necessary.

Our artifact removal technique is based on the convex
constrained restoration with the GRF model.8 The Huber
minimax function given by Eq. (11) is suitable for distin-
guishing artificial block boundaries from image details. With
the GRF, in particular the HMRF, we are able to devise an
enhancement technique suitable for artifact removal in im-
ages coded at low bit rates.
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In general, the DCT-based image coding can be modeled as

Y=Q[H(X)1 (13)

where X is the original image, H is the unitary DCT transform,
and Qill is a scalar quantization operation. The term Y now
consists of quantized coefficients that generally need fewer
bits to represent. Note that Q[.] is the only source of distortion
in the compressed image if lossless coding is employed after
the quantization. Since Q.] is a noiseless many-to-one map-
ping and the quantization intervals do not overlap, the con-
ditional probability of the compressed Y given the original
image X, P(YX) can be written as

_J1, Y=QH(X)I 14
P(YX)-0
The HMRF has been utilized to model the image prior p(x),
and this results in a convex constrained restoration problem,
since the Huber minimax function is convex. Such a tech-
nique shows the ability to smooth the artificial discontinuity
across the block boundary while preserving the remaining
details of the original image.8 Since the conditional density
p(yx) is in the particular form of Eq. (14), the optimization
that yields the MAP estimation of the image given the quan-
tized data Y is simplified to

(15)

where p(S) is a proper Huber minimax function as given in
Eq. (1 1), Cmn S the 8-neighborhood of the current pixel at
(m,n). X denotes the constraint space

X={X:y=Q[H(X)]} . (16)

The parameter T in the potential function p() controls how
much discontinuity is allowed. Below the threshold T, the
quadratic term represents a least-mean-square smoothing of
the areas with relatively similar intensities. If the difference
is above the threshold, a linear cost function is used to pre-
serve the discontinuity of the original image.

4.2 Implementation of the HMRF-Based Restoration
A major advantage of the HMRF in the restoration over other
types of GRP is its ability to switch the penalty on discon-
tinuities according to the difference of the gray level between
the current pixel and its neighbors. However, this switching
property is still inadequate when we need to distinguish image
details from the artifacts. Without semantics, a single value
of T cannot accurately describe all the discontinuities, and is
not sufficient to differentiate true image edges from artifacts.
Fortunately, the mechanism that generates the artifacts and
the locations ofthese artifacts is known in DCT-based coding.
We can use this information to develop a variation of the
HMRF model for this particular application. The disconti-
nuity inside each image block is produced in a different way
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from those along the block boundary regions. Inside the
block, the distortions come from the quantization and the
truncation of high-frequency components. Along the block
boundaries, further distortion is introduced because no cor-
relation is established across the boundaries. The artificial
block boundaries can be considered as extra high frequency
energy7 and require additional smoothing. Therefore, these
two kinds of discontinuities should be treated separately. In
this research, larger parameter Ti is chosen in the local HMRF
model for those pixels in the boundary regions to smooth the
artifacts, and a moderate T2 is applied to the inner block
regions.24

A constrained restoration problem is formed based on the
principle of MAP estimation and the constraints from DCT-
based coding. The MAP estimation produces a smoothed
update of the initial image obtained using standard de-
compression. Then, the estimated image is projected back to
the constraint space by forcing the coefficients to fall into
the original quantization intervals. The projected image is
then obtained by taking the inverse DCT of the projected
coefficients. Improvement of the image quality is obtained
through the iterative 1CM reconstruction. Because of the con-
vexity of the Huber minimax function, this convex con-
strained problem can be optimized efficiently.

4.3 Results and Discussions

Weadopt a specific DCT coding scheme23 in the experiments.
The coding of DCT coefficients is done by first applying
zonal sampling and then uniform quantization. We use this
quantization scheme intentionally, because it is able to pro-
duce a more visually severe blocking effect and ringing effect
than the other quantization tables4'7 with a slightly higher
PSNR23 at the same bit rate.

We have applied our approach to two groups of test im-
ages.24 Group 1 consists of typical gray-scale images,' 'Lena' ' and '

'Peppers,'
' and is used to verify the capability

of this algorithm in reducing the blocking effect. Group 2
consists of high-contrast images, ' 'Text' ' and '

'Chart,
' ' and

is used to verify the ability of the algorithm in reducing the
ringing effect. Using 1CM to implement the smoothing al-
gorithm, the localized spatial constraints can be enforced
appropriately and efficiently. With Ti =5 and T2 = 10, the
optimization usually reaches convergence within 10 to 20
1CM iterations. Table 1 shows the bit rate and the cone-
sponding PSNR for each test image. Using the HMRF-based
filtering in combination with a DC-calibration technique,24
which is beyond the scope of this paper, image details are
well preserved and artifacts are significantly reduced, as
shown in Figs. 3 and 4. Meanwhile, the PSNR improvement
is significant in both groups. The improvement in both the

Table 1 The PSNR evaluation of the results.

image bit rate
(bpp)

DCT
(dB)

GMRF-based
Enhancement

(dB)

HMRF-based
Enhancement

(dB)

lena 0.30 27.61 27.37 28.35

peppers 0.30 27.69 27.78 28.75

text 0.43 16.59 15.43 19.48

chart 0.80 23.21 21.30 27.76

visual quality and the PSNRjustifies the proper incorporation
of the HMRF.

GMRF modeling5'7 results in linear lowpass filtering. It
is unsuccessful in removing artifacts because it generally
blurs the image details and even causes the degradation of
PSNR. In the case of ' 'Peppers'

' where the PSNR was slightly
improved using the GMRF, the image contains mostly slowly
varying regions and relatively fewer details (not shown). The
GGMRF is also proper for edge-preserving MAP estimation.
In this case, we usedp = 1.2 as suggested.'5 In spite of some
analytical advantage ofthe GMRF over the HMRF, including
the scale invariant property, the resultant images show no
considerable difference in quality in comparison to those
obtained using the HMRF. However, the HMRF makes the
implementation more efficient because only linear operations
are involved.

5 Three-Dimensional Subband Video
Compression with Segmentation-Based
Adaptive Quantization

Video imaging coding has received great attention recently
due to an explosion of digital video communication advances
within the past few years.'3"4'25'26 We developed a novel
compression scheme based on 3-D subband decomposition
of video signals. The target of this scheme is the Integrated
Services Digital Network application, such as video-
conferencing at a bit rate of 384 kbits/s. Three-dimensional
subband video coding has some advantages. It avoids motion
estimation and motion compensation, which are very difficult
tasks themselves. Moreover, it does not generate the visually
annoying ' 'blocking effect' ' that is typical of block-based
coding approaches at low bit rates.13

In 3-D subband coding, a video sequence is decomposed
into temporal subbands, which are further decomposed into
spatial subbands, respectively.27 We adopted an 1 1-band tree-
structured decomposition scheme for video 14 To mm-
imize the computational burden of the temporal filtering and
the coding delay, temporal decomposition is based on the 2-
tap Haar filter bank.'3"4 The temporal decomposition yields
two subbands: the highpass temporal (HPT) band and the
lowpass temporal (LPT) band. Spatial decomposition, both
horizontal and vertical, is based on multitap perfect recon-
struction wavelet filter banks.28 To achieve a potential high
compression rate, the lowest frequency band is further de-
composed. This results in a tree-structured decomposition.
In this scheme, the HPT band is decomposed into four spatial
subbands, and the LPT band is decomposed into seven tree-
structured spatial subbands.

5.1 GRF-Based Segmentation as Adaptive
Quantization

After subband decomposition, each subband would exhibit
certain distinct characteristics according to the frequency re-
sponses of a particular class of bandpass filters. The coding
strategies should be designed to fully exploit these features.
The lowest frequency subband is called the baseband. It is a
low-resolution representation of the original image with
smoother spatial distribution. While the baseband has his-
togram characteristics similar to the original image, its band-
width has been significantly reduced. Therefore, it can be
efficiently coded using the differential pulse code modulation
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Fig. 3 Comparison of the artifacts reduction: (a) original "Lena" image, (b) standard decompression,
(c) GMRF-based enhancement, and (d) HMRF-based enhancement.

(DPCM) method. The high-frequency subbands contain high
temporal or high spatial frequency components of the video
signal. These subbands are sparse and highly structured, com-
posed of "edges" and "impulses" of certain directional ar-
rangements that correspond to the filtering directions. The
coding of the high-frequency subbands is critical to the over-
all coding performance if both high compression ratio and
high quality are expected. Many existing schemes based on

conventional quantization methods have tried to exploit the
characteristics of high-frequency subbands,'3"4'26'28 but have
not succeeded in coding the impulse-like pixels that often
appear in the high-frequency subbands.

We propose an adaptive quantization based on K-means
clustering with the GRF as spatial constraints. The clustering
algorithm is essentially the same as the segmentation algo-
rithm discussed in Sec. 3. The segmentation of the high-
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Fig. 4 Comparison of the artifacts reduction: (a) original "Chart" im-
age, (b) standard decompression, (c) GMRF-based enhancement;
and (d) HMRF-based enhancement.

frequency subbands and the representation of each pixel by
its cluster mean are equivalent to an adaptive quantization
process. However, because of the incorporation of spatial
constraints, we are able to generate more homogeneous spa-
tial distributions by forcing those impulse-like pixels to be
in the same clusters and quantized to the same levels as their
neighbors. The major effects of such quantization are the
reduction of impulse-like pixels and the generation of larger
and more homogeneous zero background in the quantized
subbands, which are highly desired for image and video
coding.

The binary GRF in Eq. (8) is modified to suit the char-
acteristics of the decomposed subbands. The spatial con-
straints are adjusted according to the decomposition level and
the preferential direction ofeach band to preserve the visually
significant structures in these subbands. The preferential di-
rection is defined as perpendicular to the corresponding fil-
tering direction. In particular, we set the parameter 3 between
pixels aligned in the nonpreferential direction to be twice as
large as that in the preferential direction. Such a choice en-
ables us to remove impulse-like pixels while preserving the
well-defined edges and other details in the preferential di-
rection. On the other hand, we reduce the parameter 3 as we
move down to the next level of the spatial decomposition
tree. Because of the nature of subband decomposition, a scale
factor between a clique in a subband and its corresponding
clique in the original image is present. It is reasonable to
halve the parameter 13 each time we move down the hierarchy,
because the size of the subband image is halved. Although
a rather complicated determination of the parameter 13 has
been investigated for multiresolution image processing,29 our
simple adjustment works fine and efficiently in this particular
application.

The number of quantization levels for each subband is
determined by its resolution level, which is related to the
perceptual importance. The subbands of lower resolution are
assigned more levels and thus quantized finer, because they
are of greater visual significance. The isolated impulse-like
pixels, which would otherwise require considerable bits to
code, are eliminated in the process of adaptive segmentation
through the incorporation of the GRF-based spatial con-
straints. The compression ratio of these segmented high-
frequency subbands can be greatly increased because of the
reduced entropy due to the smoother spatial distribution of
each cluster contained in these subbands. Therefore, the corn-
bination ofhigh compression in high-frequency subbands and
high fidelity in low-frequency subbands provides high-
quality coding at low bit rates.

5.2 Coding and Synthesis with Postprocessing
Different scanning schemes can be performed on different
subbands to increase the efficiency of run-length coding, be-
cause the quantized high-frequency subbands are composed
of well-defined ' 'edges'

'
aligned approximately along the

preferential direction, i.e., horizontal, vertical, or diagonal.26
Another scheme for increasing the run length is to partition
the subbands into nonoverlapping blocks. Through such a
partition, the local area of zero values can be better exploited
to improve the coding efficiency.26 The Hilbert-Peano scan
is also appropriate for this purpose.3° Entropy coding is usu-
ally employed for symbol coding and is lossless.4'26 The
performance of different coding schemes with respect to the
bit rate is currently under investigation.

The reconstructed images from these quantized high-
frequency subbands would generally contain quantization
noises that appear as discontinuities in slowly varying regions
and rings around shape edges. Fortunately, the HMRF-based
enhancement algorithm described in Sec. 4 can be used in
the postprocessing to remove the reconstruction noise while
still preserving the image details. The principle of nonlinear
filtering is also applicable here to differentiate artifacts from
true image details.

Preliminary results are obtained using the test sequence' 'Salesman.' ' In Fig. 5, the segmented high-frequency sub-
bands retain all the perceptually important structures of the
corresponding original subbands, and the nonprominent im-
pulsive noises are removed. The activity in these subbands
decreases significantly, and the compression ratio is about
40: 1 . The average PSNR of reconstruction with only up to
seven-level segmentation is about 33.15 dB. The visual qual-
ity of the reconstructed frame image is satisfactory at such
a low bit rate, as shown in Fig. 6. Both subjective observation
and objective measurement show the promise of this method
in low bit rate video 31

6 Conclusion
We have addressed the application of the GRF using several
representative image processing applications. These appli-
cations range from image segmentation and image compres-
sion to image enhancement, but the algorithms share one
common principle. That is, an appropriate modeling of the
spatial dependency in an image or an image-related process
is often the key to the successful solution to many ill-posed
image processing problems. The GRF can be versatile with
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Fig. 6 (a) Synthesized LPT after segmentation, (b) synthesized HPT after segmentation, (c) original
frame, and (d) overall synthesized frame.

196/Journal of Electronic Imaging 1Apr11 1995 / Vol. 4(2)

(a) (b)
Fig. 5 Seven-band decomposition of a LPT band of a typical "Salesman" frame: (a) original and
(b) high-frequency subband segmented and quantized.
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its simple, flexible, and practical way of parameterization.
Although the objectives pursued and the techniques involved
may differ from one case to another, the GRF provides a
general form to characterize various spatial dependency and
localized features in images. In particular, the GRF can be
employed to construct an efficient Bayesian estimation
scheme for image processing. Through these diverse appli-
cations, the intrinsic connection between seemingly different
image processing problems is revealed. Furthermore, the ap-
plications presented at this paper can also serve as examples
to show how a specific GRF can be designed according to
the nature of an individual problem. We believe that the GRF
is a powerful tool to exploit the spatial dependency in various
images, and is applicable to many other image processing
tasks.
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